题目内容
【题目】已知函数.
(1)求在点处的切线方程;
(2)当时,证明:;
(3)判断曲线与是否存在公切线,若存在,说明有几条,若不存在,说明理由.
【答案】(1);(2)证明见解析;(3)存在;存在2条公切线
【解析】
(1)计算,根据曲线在该点处导数的几何意义可得切线的斜率,然后计算,利用点斜式,可得结果.
(2)分别构造,通过导数研究的性质,可得 ,,简单判断,可得结果.
(3)分别假设与的切线,根据公切线,可得,利用导数研究函数零点个数,根据性质可得结果.
解:(1)的定义域
又
所以在点处的切线方程为:.
(2)设,
,
↑ | 极大值 | ↓ |
设则在上恒成立
综上
(3)曲线与存在公切线,且有2条,理由如下:
由(2)知曲线与无公共点,
设分别切曲线与于,则
,
若,即曲线与有公切线,则
令,
则曲线与有公切线,当且仅当有零点,
,
当时,,在单调递增,
当时,,在单调递减
,
所以存在,使得
且当时,单调递增,
当时,单调递减
,
又
所以在内各存在有一个零点
故曲线与存在2条公切线.
【题目】某传染病疫情爆发期间,当地政府积极整合医疗资源,建立“舱医院”对所有密切接触者进行14天的隔离观察治疗.治疗期满后若检测指标仍未达到合格标准,则转入指定专科医院做进一步的治疗.“舱医院”对所有人员在“入口”及“出口”时都进行了医学指标检测,若“入口”检测指标在35以下者则不需进入“舱医院”而是直接进入指定专科医院进行治疗.以下是20名进入“舱医院”的密切接触者的“入口”及“出口”医学检测指标:
入口 | 50 | 35 | 35 | 40 | 55 | 90 | 80 | 60 | 60 | 60 | 65 | 35 | 60 | 90 | 35 | 40 | 55 | 50 | 65 | 50 |
出口 | 70 | 50 | 60 | 50 | 75 | 70 | 85 | 70 | 80 | 70 | 55 | 50 | 75 | 90 | 60 | 60 | 65 | 70 | 75 | 70 |
(Ⅰ)建立关于的回归方程;(回归方程的系数精确到0.1)
(Ⅱ)如果60是“舱医院”的“出口”最低合格指标,那么,“入口”指标低于多少时,将来这些密切接触者将不能进入“舱医院”而是直接进入指定专科医院接受治疗.(检测指标为整数)
附注:参考数据:,.
参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
【题目】某省级示范高中高三年级对各科考试的评价指标中,有“难度系数“和“区分度“两个指标中,难度系数,区分度.
(1)某次数学考试(满分为150分),随机从实验班和普通班各抽取三人,实验班三人的成绩分别为147,142,137;普通班三人的成绩分别为97,102,113.通过样本估计本次考试的区分度(精确0.01).
(2)如表表格是该校高三年级6次数学考试的统计数据:
难度系数x | 0.64 | 0.71 | 0.74 | 0.76 | 0.77 | 0.82 |
区分度y | 0.18 | 0.23 | 0.24 | 0.24 | 0.22 | 0.15 |
①计算相关系数r,|r|<0.75时,认为相关性弱;|r|≥0.75时,认为相关性强.通过计算说明,能否利用线性回归模型描述y与x的关系(精确到0.01).
②ti=|xi﹣0.74|(i=1,2,…,6),求出y关于t的线性回归方程,并预测x=0.75时y的值(精确到0.01).
附注:参考数据:
参考公式:相关系数r,回归直线的斜率和截距的最小二乘估计分别为