题目内容
8.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.(Ⅰ)求数列{an}的通项公式;
(2)求证:$\sum_{k=1}^n{\frac{1}{S_k}}<\frac{5}{3}$.
分析 (1)通过解方程组$\left\{\begin{array}{l}{4{a}_{1}+6d=8{a}_{1}+4d}\\{{a}_{1}+(2n-1)d=2{a}_{1}+2(n-1)d+1}\end{array}\right.$,进而可得结论;
(2)通过(1)可知Sn=$\frac{n(1+2n-1)}{2}$=n2,通过放缩、裂项可知$\frac{1}{{S}_{n}}$<2($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),进而并项相加即得结论.
解答 (1)解:设等差数列{an}的首项为a1,公差为d,
由S4=4S2,a2n=2an+1得:
$\left\{\begin{array}{l}{4{a}_{1}+6d=8{a}_{1}+4d}\\{{a}_{1}+(2n-1)d=2{a}_{1}+2(n-1)d+1}\end{array}\right.$,
解得:a1=1,d=2,
∴an=2n-1,n∈N*;
(2)证明:由(1)可知:Sn=$\frac{n(1+2n-1)}{2}$=n2,
∵$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{{n}^{2}-\frac{1}{4}}$=$\frac{4}{4{n}^{2}-1}$=2($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴$\sum_{k=1}^{n}$$\frac{1}{{S}_{k}}$<1+2($\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
<1+$\frac{2}{3}$
=$\frac{5}{3}$.
点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.
A. | 48个 | B. | 52个 | C. | 60个 | D. | 120个 |
A. | $64+8\sqrt{5}π$ | B. | $96+(8\sqrt{5}-8)π$ | C. | $64+8\sqrt{2}π$ | D. | $96+(8\sqrt{2}-8)π$ |
A. | $\frac{19}{3}$ | B. | 5 | C. | 4 | D. | $\frac{16}{3}$ |
A. | 4种 | B. | 5种 | C. | 24种 | D. | 120种 |