题目内容
(2013•汕头一模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若A=-
,B=-
,C=1,设bn=an+n,求证:数列{bn}是等比数列;
(2)在(1)的条件下,cn=(2n+1)bn,数列{cn}的前n项和为Tn,证明:Tn<5;
(3)若C=0,{an}是首项为1的等差数列,若λ+n≤
对任意的正整数n都成立,求实数λ的取值范围(注:
xi=x1+x2+…+xn)
(1)若A=-
| 1 |
| 2 |
| 3 |
| 2 |
(2)在(1)的条件下,cn=(2n+1)bn,数列{cn}的前n项和为Tn,证明:Tn<5;
(3)若C=0,{an}是首项为1的等差数列,若λ+n≤
| n |
| i=1 |
1+
|
| n |
| i=1 |
分析:(1)依题意,an+Sn=-
n2-
n+1,由n=1可求得a1与b1,当n≥2时,an-1+Sn-1=-
(n-1)2-
(n-1)+1,两式作差可求得bn=
bn-1(n≥2),从而可证数列{bn}是等比数列;
(2)cn=
,Tn=
+
+
+…+
+
,利用错位相减法即可求得Tn=5-
,从而可证Tn<5;
(3)设Pn=
-n(n∈N*),则Pn+1=
-(n+1)(n∈N*),由Pn+1-Pn>0可知,{Pn}是递增数列,从而(Pn)min=P1,问题得到解决.
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
(2)cn=
| 2n+1 |
| 2n |
| 3 |
| 21 |
| 5 |
| 22 |
| 7 |
| 23 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
| 2n |
| 2n+5 |
| 2n |
(3)设Pn=
| n |
| i=1 |
1+
|
| n+1 |
| i=1 |
1+
|
解答:(1)证明:∵an+Sn=-
n2-
n+1,①
∴当n=1时,a1+S1=-1,即a1=-
,b1=a1+1=
,
当n≥2时,an-1+Sn-1=-
(n-1)2-
(n-1)+1,②
由①-②得:2an-an-1=-n-1,即2(an+n)=an-1+n-1,
∴bn=
bn-1(n≥2),
∴数列{bn}是首项为
,公比为
的等比数列;
(2)由(1)得:bn=(
)n,
∴cn=
,
∴Tn=
+
+
+…+
+
①,
Tn=
+
+
+…+
+
②,
由①-②得:
Tn=
+
+
+…+
-
=
+2(
+
+…+
)-
=
+2•
-
=
-
-
,
∴Tn=5-
-
=5-
,
∵
>0,
∴Tn<5.
(3)设Pn=
-n(n∈N*),Pn+1=
-(n+1)(n∈N*),
∴Pn+1-Pn=
-1>1-1=0,
∴{Pn}是递增数列,
∴(Pn)min=P1=
-1=
,
∴λ+n=
对任意的正整数n都成立?λ≤
.
| 1 |
| 2 |
| 3 |
| 2 |
∴当n=1时,a1+S1=-1,即a1=-
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,an-1+Sn-1=-
| 1 |
| 2 |
| 3 |
| 2 |
由①-②得:2an-an-1=-n-1,即2(an+n)=an-1+n-1,
∴bn=
| 1 |
| 2 |
∴数列{bn}是首项为
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)得:bn=(
| 1 |
| 2 |
∴cn=
| 2n+1 |
| 2n |
∴Tn=
| 3 |
| 21 |
| 5 |
| 22 |
| 7 |
| 23 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
| 2n |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 7 |
| 24 |
| 2n-1 |
| 2n |
| 2n+1 |
| 2n+1 |
由①-②得:
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n+1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 2n |
| 2n+1 |
| 2n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 2n+1 |
| 2n+1 |
=
| 5 |
| 2 |
| 1 |
| 2n-1 |
| 2n+1 |
| 2n+1 |
∴Tn=5-
| 1 |
| 2n-2 |
| 2n+1 |
| 2n |
| 2n+5 |
| 2n |
∵
| 2n+5 |
| 2n |
∴Tn<5.
(3)设Pn=
| n |
| i=1 |
1+
|
| n+1 |
| i=1 |
1+
|
∴Pn+1-Pn=
1+
|
∴{Pn}是递增数列,
∴(Pn)min=P1=
1+1+
|
| 1 |
| 2 |
∴λ+n=
| n |
| i=1 |
1+
|
| 1 |
| 2 |
点评:本题考查等差数列与等比数列的综合,考查等比关系的确定与错位相减法求和,突出构造函数思想,考查函数的单调性与最值,属于难题.
练习册系列答案
相关题目