题目内容

(2013•汕头一模)△ABC中内角A,B,C的对边分别为a,b,c,向量
m
=(2sin
A
2
3
)
n
=(cosA,2cos2
A
4
-1)
,且
m
n

(I)求角A的大小;
(II)若a=
7
且△ABC的面积为
3
3
2
,求b十c的值.
分析:(1)由
m
n
,结合向量平行的坐标表示可得关于A的三角关系式,然后利用二倍角公式对已知式子进行化简可求tanA,进而可求A
(2)由三角形的面积公式S=
1
2
bcsinA
可求bc,然后由余弦定理可得a2=b2+c2-2bccos
π
3
,可求b+c
解答:解:(1)∵
m
n

3
cosA=2sin
A
2
(2cos2
A
4
-1)
…(2分)
3
cosA=2sin
A
2
(2cos2
A
4
-1)=2sin
A
2
cos
A
2
=sinA
…(4分)
tanA=
3
又A∈(0,π)
A=
π
3
…(6分)
(2)∵S△ABC=
1
2
bcsinA=
1
2
bcsin
π
3
=
3
2
3
…(8分)
∴bc=6…(9分)
由余弦定理得:a2=b2+c2-2bccos
π
3
…(10分)
⇒(b+c)2=7+3bc=25…(11分)
∴b+c=5…(12分)
点评:本题主要考查了向量平行的坐标表示的应用、二倍角公式及同角基本关系的应用,余弦定理及三角形的面积公式在求解三角形中的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网