题目内容
【题目】给出下列五个命题:
①当时,有;
②若是锐角三角形,则;
③已知是等差数列的前项和,若,则;
④函数与的图像关于直线对称;
⑤当时,不等式恒成立,则实数的取值范围为.
其中正确命题的序号为___________.
【答案】② ③
【解析】
逐一考查所给命题的真假即可.
逐一考查所给的命题:
①当时,,不满足,题中的命题错误;
②若是锐角三角形,则,即,
由余弦函数的单调性可得,即,题中的命题正确;
③已知是等差数列的前项和,若,则,
据此可得,
题中的命题正确;
④设函数,则函数与的图像如图所示,很明显函数图象不关于直线对称,题中的命题错误;
⑤当时,不等式恒成立,
据此可得:恒成立,
当时,,
当时,,
由对勾函数的性质可得:时,,
则实数的取值范围为,题中的命题错误.
综上可得,正确命题的序号为② ③.
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得 = =9.97,s= = ≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数 作为μ的估计值 ,用样本标准差s作为σ的估计值 ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.