题目内容

【题目】设A,B是椭圆C: + =1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是(  )
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)

【答案】A
【解析】解:假设椭圆的焦点在x轴上,则0<m<3时,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,
∠AMB≥120°,∠AMO≥60°,tan∠AMO= ≥tan60°=
解得:0<m≤1;

当椭圆的焦点在y轴上时,m>3,
假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,
∠AMB≥120°,∠AMO≥60°,tan∠AMO= ≥tan60°= ,解得:m≥9,
∴m的取值范围是(0,1]∪[9,+∞)
故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网