题目内容

双曲线
x2
8
-
y2
4
=1
左右焦点分别为F1,F2,若过F1的直线与双曲线的左支交于A、B两点,且|AB|是|AF2|与|BF2|的等差中项,则|AB|等于(  )
A.2
2
B.4
2
C.8
2
D.8
由题意可知 2b=4,e=
c
a
=
6
2
,于是 a=2
2

∵2|AB|=|AF2|+|BF2|,
∴|AB|+|AF1|+|BF1|=|AF2|+|BF2|,
得|AB|=|AF2|-|AF1|+|BF2|-|BF1|=4a=8
2

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网