题目内容

如图,以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2.
(Ⅰ)求椭圆方程;
(Ⅱ)设点Q是椭圆位于x轴下方的一点,直线AP、BQ的斜率分别为k1,k2,若k1=7k2,设△BPQ与△APQ的面积分别为S1,S2,求S1-S2的最大值.
(Ⅰ)∵以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,
点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2,
c
a
=
3
2
ab=2
a2=b2+c2
,(2分)
解得a=2,b=1,c=
3

∴椭圆方程为
x2
4
+y2=1.(4分)
(Ⅱ)设P(x1,y1),Q(x2,y2),
设直线PQ的方程为x=my+t,代入
x2
4
+y2=1,
得(m2+4)y2+2mty+t2-4=0,(5分)
△=4m2t2-4m2t2-16t2+16m2+64=-16t2+16m2+64,
∵A(-2,0),B(2,0),直线AP、BQ的斜率分别为k1,k2
∴k1=
y1
x1+2
,k2=
y2
x2-2

由k1=7k2,得
y1
x1+2
=
7y2
x2-2

y12(x2-2)2
y12(x1+2)2
=49
,∴
(1-
x12
4
)(x2-2)2
(1-
x22
4
)(x1+2)
=49
,(7分)
(2-x1)(2-x2)
(2+x1)(2+x2)
=49,∴12x1x2+25(x1+x2)+48=0,①
x1x2=(my1+t)(my2+t)=
4(t2-m2)
m2+4

x1+x2=(my1+t)+(my2+t)=
8t
m2+4

代入①得6t2+25t+24=0,得t=-
3
2
,或t=-
8
3
(是增根,舍去),(9分)
y1+y2=
3m
m2+4
y1y2=
4
m2+4
,(10分)
所以|y1-y2|2=(y1+y22-4y1y2=
16m2+28
(m2+4)2
16
9

当m2=
1
2
时最大值.(11分)
∴S1-S2=
1
2
×3×|y1-y2|
≤2,
∴S1-S2的最大值为2.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网