题目内容

11.设θ为向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=t$\overrightarrow{OA}$,$\overrightarrow{OQ}$=(1-t)$\overrightarrow{OB}$,且|$\overrightarrow{PQ}$|在t=$\frac{1}{4}$时取得最小值,则cosθ=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

分析 运用向量的加减运算,向量的数量积的性质:向量的平方即为模的平方,二次函数的最值求法,由对称轴方程,即可得到最小值.

解答 解:|$\overrightarrow{PQ}$|=|$\overrightarrow{OQ}$-$\overrightarrow{OP}$|
=|(1-t)$\overrightarrow{OB}$-t$\overrightarrow{OA}$|=$\sqrt{((1-t)\overrightarrow{OB}-t\overrightarrow{OA})^{2}}$
=$\sqrt{(1-t)^{2}+4{t}^{2}-2t(1-t)\overrightarrow{OA}•\overrightarrow{OB}}$
=$\sqrt{(1-t)^{2}+4{t}^{2}-4t(1-t)cosθ}$
=$\sqrt{(5+4cosθ){t}^{2}-(2+4cosθ)t+1}$,
由题意可得,t=$\frac{1+2cosθ}{5+4cosθ}$=$\frac{1}{4}$时,取得最小值.
解得cosθ=$\frac{1}{4}$.
故选:C.

点评 本题考查向量的数量积的性质,考查向量的平方即为模的平方,以及二次函数的最值求法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网