题目内容
【题目】已知函数,函数,若对任意,总存在,使,则实数的取值范围是( )
A. B. C. D.
【答案】B
【解析】
求出函数,在[0,2]上的值域为[0,],y=g(x)的值域包含[0,],再求导g′(x)=ax2﹣a2,从而确定函数的单调性,从而化为最值问题.
根据所给条件,函数,在[0,2]上的值域[b,c],
≤,当且仅当x=1时取等号;
x=0时,f(0)=0,x=2时,f(2)=;
则有b=0且c=;函数的值域为:[0,].则y=g(x)的值域包含[0,]
函数,
则g′(x)=ax2﹣a2=0,a>0时,解得x=.
当4>a>0时,g′(x)>0,∴<x≤2;g′(x)<0,∴0≤x<
∴g(x)在[0,)上单调递减,在(,2]上单调递增
显然g()<g(0)=0
由题意可知,g(2)≥,即3a2﹣4a+1≤0,∴≤a≤1,
当a≥4时,g′(x)≤0,∴g(x)在[0,2]上单调递减,g(x)≤g(0),不合题意.
当a≤0时,x∈[0,2],,,不满足y=g(x)的值域包含[0,].
综上,≤a≤1.
故答案为:B.
练习册系列答案
相关题目