题目内容

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: 称为相应于点的残差(也叫随机误差));

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).

【答案】(1) ,模型乙的拟合效果更好;(2) 投放1万辆能获得更多利润,应该增加到投放1万辆.

【解析】试题分析(1)通过对回归方程的计算可得两种模型的估计值,代入,即可得残差;计算可得可知模型乙拟合效果更好;(2)分别计算投放千辆和一万辆时该公司一天获得的总利润,即可得结论。

(1)①经计算,可得下表:

,故模型乙的拟合效果更好.

(2)若投放量为8千辆,则公司获得每辆车一天的收入期望为

所以一天的总利润为(元)

若投放量为1万辆,由(1)可知,每辆车的成本为(元),

每辆车一天收入期望为

所以一天的总利润为(元)

所以投放1万辆能获得更多利润,应该增加到投放1万辆.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网