题目内容

【题目】如图,椭圆C: (ab>0)的离心率为,其左焦点到点的距离为.不过原点O的直线与C相交于AB两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;

(2)求ABP的面积取最大时直线l的方程.

【答案】(1) ;(2) 直线l的方程为 .

【解析】试题分析:

(1)由题意可得.则所求椭圆C的方程为:

(2)首先设出点的坐标,设而不求可得直线AB的斜率为,然后联立直线与椭圆的方程,结合面积函数,利用导函数研究三角形面积的最大值可得ABP的面积取最大时直线l的方程是 .

试题解析:

(1)由题意可得

左焦点到点的距离为:

由①②可解得:

∴所求椭圆C的方程为:

(2)易得直线OP的方程: ,设A(xAyA)B(xByB)R(x0y0)

其中y0x0AB在椭圆上,

设直线AB的方程为 (m≠0),代入椭圆:

整理得:

显然

m≠0.由上又有:

AB||

∵点到直线l的距离表示为:

SABP

m≠0 ,令

解得,( ),

时, 递增,

时, 递减,

所以,当且仅当时, ABP的面积取最大,

此时,直线l的方程为

练习册系列答案
相关题目

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: 称为相应于点的残差(也叫随机误差));

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网