题目内容
如图,过圆O外一点P作该圆的两条割线PAB和PCD,分别交圆O于点A,B,C,D,弦AD和BC交于点Q,割线PEF经过点Q交圆O于点E,F,点M在EF上,且∠BAD=∠BMF.
(1)求证:PA·PB=PM·PQ;
(2)求证:∠BMD=∠BOD.
(1)求证:PA·PB=PM·PQ;
(2)求证:∠BMD=∠BOD.
(1)见解析(2)见解析
(1)∵∠BAD=∠BMF,
∴A,Q,M,B四点共圆,
∴PA·PB=PM·PQ.
(2)∵PA·PB=PC·PD,
∴PC·PD=PM·PQ,
又∠CPQ=∠MPD,
∴△CPQ∽△MPD,
∴∠PCQ=∠PMD,则∠DCB=∠FMD,
∵∠BAD=∠BCD,
∴∠BMD=∠BMF+∠DMF=2∠BAD,
又∠BOD=2∠BAD,
∴∠BMD=∠BOD.
∴A,Q,M,B四点共圆,
∴PA·PB=PM·PQ.
(2)∵PA·PB=PC·PD,
∴PC·PD=PM·PQ,
又∠CPQ=∠MPD,
∴△CPQ∽△MPD,
∴∠PCQ=∠PMD,则∠DCB=∠FMD,
∵∠BAD=∠BCD,
∴∠BMD=∠BMF+∠DMF=2∠BAD,
又∠BOD=2∠BAD,
∴∠BMD=∠BOD.
练习册系列答案
相关题目