题目内容
已知函数
(Ⅰ)求函数的图像在处的切线方程;
(Ⅱ)设实数,求函数在上的最小值.
(1),(2)
解析试题分析:(1)定义域为 又
函数的在处的切线方程为:,即
(2)令得 当,,单调递减,当,,单调递增.
(i)当时,在单调递增,,
(ii)当即时,
(iii)当即时,在单调递减,
考点:导数的几何意义,直线方程,利用导数研究函数的极值(最值)。
点评:典型题,切线的斜率,等于在切点的导函数值。利用导数研究函数的极值,一般遵循“求导数、求驻点、研究导数的正负、确定极值”,利用“表解法”,清晰易懂。为研究函数的极值,就参数的范围进行讨论,易于出错。
练习册系列答案
相关题目