题目内容
【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,且sinAsinBcosB+sin2BcosA=2 sinCcosB.
(1)求tanB的值;
(2)若△ABC的外接圆半径为R,求的值.
【答案】(1) tanB=2. (2)
【解析】
(1)利用两角和差公式对式子sinAsinBcosB+sin2BcosA=2sinCcosB进行化简,便可得到结果;
(2)利用同角三角函数关系可得结果.
解:(1)等式sinAsinBcosB+sin2BcosA=2sinCcosB化简得,
sinB(sinAcosB+cosAsinB)=2sinCcosB,
∴sinBsin(A+B)=2sinCcosB,
,
∴sinBsinC=2sinCcosB,
∵
∴sinC≠0,
∴tanB=2.
(2)∵tanB=2,且0<B<π,
∴B为锐角,且
即,
,
∴,
解得:cosB=.
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元) | 18 | 19 | 20 | 21 | 22 |
销量(册) | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立关于的回归直线方程:
(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:,,,.
【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议。为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图。
(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关”.
基础年级 | 高三 | 合计 | |
优秀 | |||
非优秀 | |||
合计 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.