ÌâÄ¿ÄÚÈÝ
20£®ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC1·½³ÌΪ¦Ñ=2sin¦È£»C2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨¢ñ£©Ð´³öÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌºÍC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèµãPΪÇúÏßC1ÉϵÄÈÎÒâÒ»µã£¬ÇóµãP µ½ÇúÏßC2¾àÀëµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨I£©Ö±½ÓÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯Çó³öC1µÄÖ±½Ç×ø±ê·½³Ì£¬C2µÄÆÕͨ·½³Ì£®
£¨II£©Çó³öC1ΪÒÔ£¨0£¬1£©ÎªÔ²ÐÄ£¬r=1Ϊ°ë¾¶µÄÔ²£¬ÀûÓÃÔ²ÐľàÍƳö¾àÀëµÄ×îÖµµÃµ½·¶Î§¼´¿É£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö10·Ö£©
½â£º£¨I£©ÇúÏßC1·½³ÌΪ¦Ñ=2sin¦È£¬¿ÉµÃ¦Ñ2=2¦Ñsin¦È£¬¿ÉµÃx2+y2=2y£¬
¡àC1µÄÖ±½Ç×ø±ê·½³Ì£ºx2+£¨y-1£©2=1£¬
C2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£º
C2µÄÆÕͨ·½³Ì£º$\sqrt{3}x-y+\sqrt{3}=0$£®¡£¨4·Ö£©
£¨II£©ÓÉ£¨I£©Öª£¬C1ΪÒÔ£¨0£¬1£©ÎªÔ²ÐÄ£¬r=1Ϊ°ë¾¶µÄÔ²£¬C1µÄÔ²ÐÄ£¨0£¬1£©µ½C2µÄ¾àÀëΪ$d=\frac{{|{-1+\sqrt{3}}|}}{{\sqrt{3+1}}}=\frac{{\sqrt{3}-1}}{2}£¼1$£¬ÔòC1ÓëC2Ïཻ£¬Pµ½ÇúÏßC2¾àÀë×îСֵΪ0£¬×î´óֵΪ$d+r=\frac{{\sqrt{3}+1}}{2}$£¬
ÔòµãPµ½ÇúÏßC2¾àÀëµÄÈ¡Öµ·¶Î§Îª$[{0£¬\frac{{\sqrt{3}+1}}{2}}]$£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²é¼ÆËãÄÜÁ¦£®
A£® | µÚ6Ïî | B£® | µÚ7Ïî | C£® | µÚ8Ïî | D£® | µÚ9Ïî |
A£® | B£® | C£® | D£® |
A£® | {x|2£¼x£¼3} | B£® | {x|-$\frac{1}{2}$£¼x£¼2} | C£® | {x|-1$£¼x£¼-\frac{1}{2}$} | D£® | {x|-1$£¼x£¼\frac{1}{2}$»ò2£¼x£¼3} |