题目内容
【题目】函数的f(x)= sin(ωx+φ)(ω>0,﹣ )图象关于直线x= 对称,且图象上相邻两个最高点的距离为π,若 (0<α<π),则 =( )
A.
B.
C.
D.
【答案】A
【解析】解:∵函数的f(x)= sin(ωx+φ)(ω>0,﹣ )图象关于直线x= 对称, 且图象上相邻两个最高点的距离为π,
∴ =π,∴ω=2,∵sin(2 +φ)=±1,∴φ=﹣ ,f(x)= sin(2x﹣ ).
若 = sin(α﹣ )(0<α<π),∴sin(α﹣ )= ,∴α﹣ ∈(0, ),
则 =sin(2π﹣ ﹣α)=﹣sin( +α)=﹣sin[ +(α﹣ )]=﹣cos(α﹣ )=﹣ =﹣ ,
故选:A.
练习册系列答案
相关题目
【题目】参与舒城中学数学选修课的同学对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图.
定价x(元/千克) | 10 | 20 | 30 | 40 | 50 | 60 |
年销量y(千克) | 1150 | 643 | 424 | 262 | 165 | 86 |
z=2 ln y | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
参考数据:
,
.
(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?
(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).
(3)当定价为150元/千克时,试估计年销量.
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…,(xn,yn),其回归直线x+的斜率和截距的最
小二乘估计分别为