题目内容
(I)证明当
(II)若不等式取值范围.
(II)若不等式取值范围.
(I)见解析(II)
(I)令,
即为增函数,即为减函数,
故,为减函数,
(II)
下面证明,
综上
直接移项构造函数,比较容易想到,但是求出导函数后又变得无从下手,这时候需要二次求导分析来解决。两种解法各有特点。第二问主要是在第一问的基础上利用不等式进行适当的放缩,转化为另一个函数进行分析解答。
【考点定位】本题考查函数与导数,导数与不等式的综合应用。
即为增函数,即为减函数,
故,为减函数,
(II)
下面证明,
综上
直接移项构造函数,比较容易想到,但是求出导函数后又变得无从下手,这时候需要二次求导分析来解决。两种解法各有特点。第二问主要是在第一问的基础上利用不等式进行适当的放缩,转化为另一个函数进行分析解答。
【考点定位】本题考查函数与导数,导数与不等式的综合应用。
练习册系列答案
相关题目