题目内容
设函数
.
(1)若
,试求函数
的单调区间;
(2)过坐标原点
作曲线
的切线,证明:切点的横坐标为1;
(3)令
,若函数
在区间(0,1]上是减函数,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429123790.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429155337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429155495.png)
(2)过坐标原点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429170292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429201580.png)
(3)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429217727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429233491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429248349.png)
(1)
的减区间为
,增区间![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429529740.png)
(2)导数的几何意义的运用,理解切线的斜率即为该点的导数值既可以得到求证。
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429545415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429155495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429279665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429529740.png)
(2)导数的几何意义的运用,理解切线的斜率即为该点的导数值既可以得到求证。
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429545415.png)
试题分析:解: (1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429155337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429591936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429607766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429623733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154296541813.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429155495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429279665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429529740.png)
(2)设切点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429732793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429747859.png)
切线的斜率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429763670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429779641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154297941912.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429810317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429825564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429841654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429857577.png)
有唯一解
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429872323.png)
或者设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429903728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429919849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429935958.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429966560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429825564.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429997957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429233491.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154301371252.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154301531050.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154301691236.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154301841982.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429545415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430215651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430247513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430262429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430278760.png)
即不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430293997.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430371415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154304651591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430481523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430262429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430512791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154305271104.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430543892.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430559641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430559754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430574759.png)
这与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430590639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154301531050.png)
综上所述,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429545415.png)
解法二:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429997957.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429233491.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154306681279.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154301531050.png)
显然
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429872323.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430715584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430730935.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154307302265.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154307462423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430481523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430777459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430793737.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430808631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430247513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015430777459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240154308552521.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015429545415.png)
点评:主要是考查了导数在研究函数中的运用,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目