搜索
题目内容
若函数
的零点所在区间是
,则
的值是______.
试题答案
相关练习册答案
试题分析:
,所以
在
上是单调递增函数,又
所以函数
的零点在区间
上,所以
.
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
设
,函数
(1)当
时,求曲线
在
处的切线方程;
(2)当
时,求函数
的单调区间;
(3)当
时,求函数
的最小值
已知函数
(
是自然对数的底数).
(1)若曲线
在
处的切线也是抛物线
的切线,求
的值;
(2)当
时,是否存在
,使曲线
在点
处的切线斜率与
在
上的最小值相等?若存在,求符合条件的
的个数;若不存在,请说明理由.
已知
是实数,函数
,
和
,分别是
的导函数,若
在区间
上恒成立,则称
和
在区间
上单调性一致.
(Ⅰ)设
,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(Ⅱ)设
且
,若函数
和
在以
为端点的开区间上单调性一致,求
的最大值.
已知
在
处取得极值。
(Ⅰ)证明:
;
(Ⅱ)是否存在实数
,使得对任意
?若存在,求
的所有值;若不存在,说明理由。
已知函数
.
(Ⅰ)当
时,函数
取得极大值,求实数
的值;
(Ⅱ)已知结论:若函数
在区间
内存在导数,则存在
,使得
. 试用这个结论证明:若函数
(其中
),则对任意
,都有
;
(Ⅲ)已知正数
满足
,求证:对任意的实数
,若
时,都
有
.
(I)证明当
(II)若不等式
取值范围.
设定义在
上的函数
是最小正周期为
的偶函数,
是
的导函数.当
时,
;当
且
时,
.则函数
在
上的零点个数为
.
已知函数
的导数
为实数,
.
(Ⅰ)若
在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点
且与曲线
相切的直线
的方程;
(Ⅲ)设函数
,试判断函数
的极值点个数。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总