题目内容

【题目】若f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极大值10,则 的值为(
A.
B.
C.
D.

【答案】C
【解析】解:∵f(x)=x3+ax2+bx﹣a2﹣7a, ∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极大值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,
∴a2+8a+12=0,
∴a=﹣2,b=1或a=﹣6,b=9.
当a=﹣2,b=1时,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),
<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在x=1处取得极小值,与题意不符;
当a=﹣6,b=9时,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)
当x<1时,f′(x)>0,当<x<3时,f′(x)<0,
∴f(x)在x=1处取得极大值,符合题意;
=﹣ =﹣
故选:C.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网