题目内容
【题目】已知函数 的定义域是[a,b](a,b为整数),值域是[0,1],则满足条件的整数数对(a,b)共有 个.
【答案】5
【解析】解:由 =0得 ,得|x|+2=4,即|x|=2,得x=2或﹣2,
由 =1得 ,得|x|+2=2,即|x|=0,得x=0,
则定义域为可能为[﹣2,0],[﹣2,1],[﹣2,2],[﹣1,2],[0,2],
则满足条件的整数数对(a,b)为(﹣2,0),(﹣2,1),(﹣2,2),(﹣1,2),(0,2)共5个.
所以答案是:5.
【考点精析】通过灵活运用函数的定义域及其求法,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零即可以解答此题.
【题目】某市为响应国家节能减排建设的号召,唤起人们从自己身边的小事做起,开展了以“再小的力量也是一种支持”为主题的宣传教育活动,其中有两则公益广告: ①80部手机,一年就会增加一吨二氧化氮的排放.
②人们在享受汽车带了的便捷舒适的同时,却不得不呼吸汽车排放的尾气.
活动组织者为了解是市民对这两则广告的宣传效果,随机对10﹣60岁的人群抽查了n人,并就两个问题对选取的市民进行提问,其抽样人数频率分布直方图如图所示,宣传效果调查结果如表所示.
宣传效果调查表
广告一 | 广告二 | |||
回答正 | 占本组 | 回答正 | 占本组 | |
[10,20) | 90 | 0.5 | 45 | a |
[20,30) | 225 | 0.75 | k | 0.8 |
[30,40) | b | 0.9 | 252 | 0.6 |
[40,50) | 160 | c | 120 | d |
[50,60] | 10 | e | f | g |
(1)分别写出n,a,b,c,d的值.
(2)若将表中的频率近似看作各年龄组正确回答广告内容的概率,规定正确回答广告一的内容得30元,广告二的内容得60元.组织者随机请一家庭的两成员(大人45岁,孩子17岁),指定大人回答广告一的内容,孩子回答广告二的内容,求该家庭获得奖金数ξ的分布列及期望.