题目内容

【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

【答案】证明:(Ⅰ)∵长方形ABCD中,AB=2 ,AD= ,M为DC的中点, ∴AM=BM=2,∴BM⊥AM.
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM平面ABCM
∴BM⊥平面ADM
∵AD平面ADM∴AD⊥BM;
(Ⅱ)建立如图所示的直角坐标系,设
则平面AMD的一个法向量 =(0,1,0), = + =(1﹣λ,2λ,1﹣λ), =(﹣2,0,0),
设平面AME的一个法向量为 =(x,y,z),则
取y=1,得x=0,z=
=(0,1, ),
∵cos< >= = ,∴求得
故E为BD的中点.

【解析】(Ⅰ)根据线面垂直的性质证明BM⊥平面ADM即可证明AD⊥BM(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立二面角的夹角关系,解方程即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网