ÌâÄ¿ÄÚÈÝ
17£®¶ÔÓÚÈÎÒâʵÊýa£¬b£¬¶¨Òåmin{a£¬b}=$\left\{\begin{array}{l}a£¬a¡Üb\\ b£¬a£¾b\end{array}\right.$£¬¶¨ÒåÔÚRÉϵÄżº¯Êýf £¨x£©Âú×ãf £¨x+4£©=f£¨x£©£¬ÇÒµ±0¡Üx¡Ü2ʱ£¬f £¨x£©=min{2x-1£¬2-x}£¬Èô·½³Ìf £¨x£©-mx=0Ç¡ÓÐÁ½¸ö¸ù£¬ÔòmµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©A£® | {-1£¬1}¡È£¨-ln2£¬$-\frac{1}{3}$£©¡È£¨$\frac{1}{3}$£¬ln2£© | B£® | [-1£¬$-\frac{1}{3}$£©¡È$£¨{\frac{1}{3}£¬1}]$ | ||
C£® | {-1£¬1}¡È£¨-ln2£¬$-\frac{1}{2}$£©¡È£¨$\frac{1}{2}$£¬ln2£© | D£® | £¨$-\frac{1}{2}$£¬$-\frac{1}{3}$£©¡È£¨$\frac{1}{3}$£¬$\frac{1}{2}$£© |
·ÖÎö Ê×ÏÈÓÉÌâÒâÇó³öf£¨x£©£¬È»ºóÁîg£¨x£©=mx£¬×ª»¯ÎªÍ¼Ïó½»µãµÄÎÊÌâ½â¾ö£®
½â´ð ½â£ºÓÉÌâÒâµÃ$f£¨x£©=\left\{\begin{array}{l}{{2}^{x}-1£¬0¡Üx¡Ü1}\\{2-x£¬1£¼x¡Ü2}\end{array}\right.$£¬ÓÖÒòΪf£¨x£©ÊÇżº¯ÊýÇÒÖÜÆÚÊÇ4£¬¿ÉµÃÕû¸öº¯ÊýµÄͼÏó£¬
Áîg£¨x£©=mx£¬±¾Ìâת»¯ÎªÁ½¸ö½»µãµÄÎÊÌ⣬ÓÉͼÏó¿ÉÖªÓÐÈý²¿·Ö×é³É£¬ÅųýB£¬DÒ׵õ±¹ý£¨3£¬1£©£¬£¨-3£¬1£©µãʱǡÓÐÈý¸ö½»µã£¬´Ëʱm=¡À$\frac{1}{3}$£¬
¹ÊÑ¡A£®
µãÆÀ ±¾Ì⿼²éµÄÊǺ¯ÊýµÄÐÔÖʵÄ×ÛºÏÓ¦Óã¬ÀûÓÃÊýÐνáºÏ¿ìËٵý⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÒÑÖªiÊÇÐéÊýµ¥Î»£®ÔÚ¸´Æ½ÃæÄÚ£¬¸´Êý$\frac{1+i}{i}$µÄ¹²éÊý¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
9£®²»µÈʽx-x2£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£® | £¨-¡Þ£¬0£© | B£® | £¨0£¬+¡Þ£© | C£® | £¨-¡Þ£¬-1£© | D£® | £¨0£¬1£© |