题目内容

2.若x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则z=2x+y的最大值是(  )
A.3B.$\frac{3}{2}$C.4D.5

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即A(2,-1),
代入目标函数z=2x+y得z=2×2-1=4-1=3.
即目标函数z=2x+y的最大值为3.
故选:A

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网