题目内容
【题目】对于定义域为的函数,如果存在区间,其中,同时满足:
①在内是单调函数:②当定义域为时,的值域为,则称函数是区间上的“保值函数”,区间称为“保值函数”.
(1)求证:函数不是定义域上的“保值函数”;
(2)若函数()是区间上的“保值函数”,求的取值范围;
(3)对(2)中函数,若不等式对恒成立,求实数的取值范围.
【答案】(1)证明见详解;(2)或;(3)
【解析】
(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知,,转化为是方程的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题.
(1)函数在时的值域为,不满足“保值函数”的定义,
因此函数不是定义域上的“保值函数”.
(2)因为函数在内是单调增函数,
因此,,
因此是方程的两个不相等的实根,
等价于方程有两个不相等的实根.
由
解得或.
(3),
,
即为对恒成立.
令,易证在单调递增,
同理在单调递减.
因此,,
.
所以
解得.
又或,
所以的取值范围是.
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
图1 图2
(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;
②参考数据:.
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量(单位:)和与它“相近”的株数具有线性相关关系(两株作物“相近”是指它们的直线距离不超过),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量关于它“相近”株数的回归方程;
(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为,计划收获后能全部售出,价格为10元,如果收入(收入=产量×价格)不低于25000元,则的最大值是多少?
(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.
附:回归方程中斜率和截距的最小二乘法估计公式分别为:,.