题目内容
【题目】在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.
(1)求点,的极坐标;
(2)若点为曲线上的动点,为线段的中点,求的最大值.
【答案】(1),; (2).
【解析】
(1)利用极坐标和直角坐标的互化公式,即得解;
(2)设点的直角坐标为,则点的直角坐标为.将此代入曲线的方程,可得点在以为圆心,为半径的圆上,所以的最大值为,即得解.
(1)因为点在曲线上,为正三角形,
所以点在曲线上.
又因为点在曲线上,
所以点的极坐标是,
从而,点的极坐标是.
(2)由(1)可知,点的直角坐标为,B的直角坐标为
设点的直角坐标为,则点的直角坐标为.
将此代入曲线的方程,有
即点在以为圆心,为半径的圆上.
,
所以的最大值为.
练习册系列答案
相关题目