题目内容

【题目】已知函数,其中

)求的单调区间;

)若在上存在,使得成立,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:(1)函数的单调区间与导数的符号相关,而函数的导数为,故可以根据的符号讨论导数的符号,从而得到函数的单调区间.(2)若不等式 上有解,那么在上, .但上的单调性不确定,故需分 三种情况讨论.

解析:(1)

①当时,在 上单调递增;

②当时,在;在;所以上单调递减,在上单调递增.

综上所述,当时, 的单调递增区间为,当时, 的单调递减区间为,单调递增区间为.

(2)若在上存在,使得成立,则上的最小值小于.

①当,即时,由(1)可知上单调递增, 上的最小值为,由,可得

②当,即时,由(1)可知上单调递减, 上的最小值为,由,可得

③当,即时,由(1)可知上单调递减,在上单调递增, 上的最小值为,因为,所以,即,即,不满足题意,舍去.

综上所述,实数的取值范围为.

练习册系列答案
相关题目

【题目】时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。

附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字12345表示小智同学统计的五个年份的年份数,今年的年份数是6

统计表(一)

年份数x

1

2

3

4

5

“参与”人数(y千人)

1.9

2.3

2.0

2.5

2.8

统计表(二)

高一(3)(4)班参加羽毛球比赛的情况:

男生

女生

小计

参加(人数)

26

b

50

不参加(人数)

c

20

小计

44

100

1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程,并预估今年的校运会的“参与”人数;

2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量,试求随机变量的分布列、期望和方差

3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?

参考公式和数据一:

参考公式二:,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网