题目内容
(重点中学学生做)一个动圆与定圆F:(x+2)2+y2=1相外切,且与定直线L:x=1相切,则此动圆的圆心M的轨迹方程是( )
A.y2=4x | B.y2=-2x | C.y2=-4x | D.y2=-8x |
设动圆M的半径为r,依题意:|MF|=r+1,点M到定直线x=2的距离为d=r+1
∴动点M到定点F(-2,0)的距离等于到定直线x=2的距离
∴M的轨迹为以F为焦点,x=2为准线的抛物线
∴此动圆的圆心M的轨迹方程是y2=-8x
故选 D
∴动点M到定点F(-2,0)的距离等于到定直线x=2的距离
∴M的轨迹为以F为焦点,x=2为准线的抛物线
∴此动圆的圆心M的轨迹方程是y2=-8x
故选 D
练习册系列答案
相关题目