题目内容
如图,已知椭圆
的右焦点为
,点
是椭圆上任意一点,圆
是以
为直径的圆.
(1)若圆
过原点
,求圆
的方程;
(2)写出一个定圆的方程,使得无论点
在椭圆的什么位置,该定圆总与圆
相切,请写出你的探究过程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949924781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949753788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949768176.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949784161.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949815189.png)
(1)若圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949846162.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
(2)写出一个定圆的方程,使得无论点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949784161.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949924781.png)
(1)
或
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529499551227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529499711242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949987628.png)
试题分析:(1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950002421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950065292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950080554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950096289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
(2)设圆M的半径为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950127260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950158642.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950174849.png)
根据椭圆的标准方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949753788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950205674.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529502211674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950236714.png)
解:(1)解法一:因为圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949846162.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950283225.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949784161.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949784161.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950345459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950361473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950392549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950408571.png)
易求圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950455472.png)
所以圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529499551227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529499711242.png)
解法二:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950533656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950065292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950080554.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950611632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950642617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950657601.png)
于是点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950689672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950704683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950455472.png)
所以圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950018399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529499551227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529499711242.png)
(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949987628.png)
探究过程为:设圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950829152.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950845164.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240529508601740.png)
所以当原点为定圆圆心,半径
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052950876385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052949799173.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目