题目内容
【题目】统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y= x3﹣ x+8(0<x≤120)已知甲、乙两地相距100千米. (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
【答案】解:(I)当x=40时,汽车从甲地到乙地行驶了 小时,
要耗油 (升).
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.
(II)当速度为x千米/小时时,汽车从甲地到乙地行驶了 小时,设耗油量为h(x)升,
依题意得 , .
令h'(x)=0,得x=80.
当x∈(0,80)时,h'(x)<0,h(x)是减函数;
当x∈(80,120)时,h'(x)>0,h(x)是增函数.
∴当x=80时,h(x)取到极小值h(80)=11.25.
因为h(x)在(0,120]上只有一个极值,
所以它是最小值.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升
【解析】(I)把用的时间求出,在乘以每小时的耗油量y即可.(II)求出耗油量为h(x)与速度为x的关系式,再利用导函数求出h(x)的极小值判断出就是最小值即可.
【题目】为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).如图所示茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.
(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;
(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2表,并判断有多大把握认为“成绩优秀与教学方式有关”.
甲班 | 乙班 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
下面临界值表仅供参考:
P(x2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.79 | 10.828 |
(参考公式:x2= )