题目内容
【题目】已知函数f(x)=sin ωx·cos ωx+ cos2ωx-
(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为 .
(Ⅰ)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.
【答案】(1)f(x)=sin.(2)
【解析】 试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出 的表达式,再利用符合函数法求得递减区间.
试题解析:
(1)f(x)=sin 2ωx+×-
=sin 2ωx+cos 2ωx=sin,
由题意知,最小正周期T=2×=,
T===,所以ω=2,∴f(x)=sin.
(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,
再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,
得到y=sin的图象.
所以g(x)=sin.
由,
得
所以所求的单调减区间为
【题目】
周销售量(单位:吨) | 2 | 3 | 4 |
频数 | 20 | 50 | 30 |
⑴ 根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
⑵ 已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.
【题目】(本小题满分12分,第(1)问 6 分,第(2)问 6 分)
某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销售量(件) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?