题目内容

【题目】已知函数的定义域为集合AB{x|x<a}

(1)求集合A

(2)ABa的取值范围;

(3)若全集U{x|x4}a=-1U AA(U B)

【答案】(1)A={x|-2<x≤3};(2)(3,+∞);(3)U A=(-∞,-2]∪(3,4],A∩(U B)=[-1,3].

【解析】试题分析:(1)由即可得定义域;

(2)利用数轴及AB可得a>3;

(3)由U{x|x4}a=-1,利用补集定义可得U AU B进而利用交集定义得A(U B).

试题解析:

(1)使有意义的实数x的集合是{x|x≤3},使有意义的实数x的集合是{x|x>-2}.

所以,这个函数的定义域是{x|x≤3}∩{x|x>-2}={x|-2<x≤3}.

A={x|-2<x≤3}.

(2)因为A={x|-2<x≤3},B={x|x<a}且AB,所以a>3.

a的取值范围为(3,+∞).

(3)因为U={x|x≤4},A={x|-2<x≤3},

所以U A=(-∞,-2]∪(3,4].

因为a=-1,所以B={x|x<-1},

所以U B=[-1,4],

所以A∩(U B)=[-1,3].

练习册系列答案
相关题目

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网