题目内容
【题目】已知函数的定义域为集合A,B={x|x<a}.
(1)求集合A;
(2)若AB,求a的取值范围;
(3)若全集U={x|x≤4},a=-1,求U A及A∩(U B).
【答案】(1)A={x|-2<x≤3};(2)(3,+∞);(3)U A=(-∞,-2]∪(3,4],A∩(U B)=[-1,3].
【解析】试题分析:(1)由和即可得定义域;
(2)利用数轴及AB可得a>3;
(3)由U={x|x≤4},a=-1,利用补集定义可得U A和U B进而利用交集定义得A∩(U B).
试题解析:
(1)使有意义的实数x的集合是{x|x≤3},使有意义的实数x的集合是{x|x>-2}.
所以,这个函数的定义域是{x|x≤3}∩{x|x>-2}={x|-2<x≤3}.
即A={x|-2<x≤3}.
(2)因为A={x|-2<x≤3},B={x|x<a}且AB,所以a>3.
即a的取值范围为(3,+∞).
(3)因为U={x|x≤4},A={x|-2<x≤3},
所以U A=(-∞,-2]∪(3,4].
因为a=-1,所以B={x|x<-1},
所以U B=[-1,4],
所以A∩(U B)=[-1,3].
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
【题目】“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃,及“凑够一撮人就可以走了,和红绿灯无关”,某校研究性学习小组对全校学生按“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”等三种形式进行调查获得下表数据:
跟从别人闯红灯 | 从不闯红灯 | 带头闯红灯 | |
男生 | 980 | 410 | 60 |
女生 | 340 | 150 | 60 |
用分层抽样的方法,从所有被调查的人中抽取一个容量为的样本,其中在“跟从别人闯红灯”的人中抽取了66人,
(Ⅰ) 求的值;
(Ⅱ)在所抽取的“带头闯红灯”的人中,任选取2人参加星期天社区组织的“文明交通”宣传活动,求这2人中至少有1人是女生的概率.
【题目】(本题满分12分)某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,用最小二乘法求出y与x的回归方程;
(3)预测销售额为115万元时,大约需要多少万元广告费。
参考公式:回归方程为其中,