题目内容
【题目】(本小题满分12分)
在平面直角坐标系中,有三个点的坐标分别是.
(1)证明:A,B,C三点不共线;
(2)求过A,B的中点且与直线平行的直线方程;
(3)设过C且与AB所在的直线垂直的直线为,求与两坐标轴围成的三角形的面积.
【答案】(1)见解析,(2),(3)
【解析】
试题分析:注意证明平面当中的三点不共线的方法,可以应用两点所在直线的斜率不相等来处理,对应第二问需要知道两直线平行时的条件,应用点斜式方程可得结果,也可应用平行直线系方程的应用,对应第三问,要明确两直线垂直的条件,可以应用点斜式方程,也可应用垂直直线系方程,来求出对应的直线方程,从而找出和坐标轴的交点,得出所得的三角形的面积.
试题解析:(1)∵ , (1分)
, (2分)
∴, (3分)
∴三点不共线. (4分)
(2)∵的中点坐标为, (5分)
直线的斜率, (6分)
所以满足条件的直线方程为,即为所求. (8分)
(3)∵,∴与AB所在直线垂直的直线的斜率为, (9分)
所以满足条件的直线的方程为,即. (10分)
因为直线在轴上的截距分别为4和, (11分)
所以与两坐标轴围成的三角形的面积为. (12分)
【题目】某种商品在天每件的销售价格(元)与时间(天)的函数关系用如图表示,该商品在天内日销售量(件)与时间(天)之间的关系如下表:
天 | ||||
件 |
()根据提供的图象(如图),写出该商品每件的销售价格与时间的函数关系式.
()根据表提供的数据,写出日销售量与时间的一次函数关系式.
()求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.