题目内容
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,且.
(1)求角A;
(2)若a=2,△ABC的周长为6,求△ABC的面积.
【答案】(1); (2).
【解析】
(1)利用正弦定理边角互化与和差角公式化简求即可.
(2)利用a=2,△ABC的周长为6可求出b+c=4.再用余弦定理与化简出关于的表达式从而得出再求解面积即可.
(1)∵,
∴由正弦定理可得3sinAcosBsinBsinA=3sinC,
∵sinC=sin(A+B)=sinAcosB+sinBcosA,
∴sinBsinA=3cosAsinB,
∵sinB≠0,∴sinA=3cosA,可得tanA,
∵A∈(0,π),∴A.
(2)∵A,a=2,△ABC的周长为6,
∴b+c=4,
∴由余弦定理a2=b2+c2﹣2bccosA,可得4=b2+c2﹣bc=(b+c)2﹣3bc=16﹣3bc,解得bc=4,
∴S△ABCbcsinA.
练习册系列答案
相关题目
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量单位:万只与相应年份序号的数据表和散点图如图所示,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数单位:个关于x的回归方程.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊万只 |
根据表中的数据和所给统计量,求y关于x的线性回归方程参考统计量:,;
试估计:该县第一年养殖山羊多少万只
到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据,,,其回归直线的斜率和截距的最小二乘估计分别为,.