题目内容

【题目】已知数列满足 ,它的前项和为,且

(Ⅰ)求

(Ⅱ)已知等比数列满足 ,设数列的前项和为,求

【答案】(1) ;(2) ;当时,

【解析】试题分析:(1)由2an+1=an+an+2判断出数列{an}是等差数列,将a3=5,S6=36用基本量表示得到关于首项、公差的方程组,求出首项、公差,利用等差数列的通项公式求出an;(2)将b1+b2=1+a,b4+b5=a3+a4两个式子作商求出公比,利用等比数列的通项公式求出通项,由于anbn=(2n﹣1)an﹣1.所以利用错位相减的方法求出数列{anbn}的前n项和为Tn

详解:(1)由2an+1=an+an+2得an+2﹣an+1=an+1﹣an

则数列{an}是等差数列.

因此,an=2n﹣1.

(2)设等比数列{bn}的公比为q,

=

∴q=a.

由b1+b2=1+a,得b1(1+a)=1+a.

∵a≠﹣1,

∴b1=1.

则bn=b1qn﹣1=an﹣1,anbn=(2n﹣1)an﹣1

Tn=1+3a+5a2+7a3+…+(2n﹣1)an﹣1…①

当a≠1时,aTn=a+3a2+5a3+7a4+…+(2n﹣1)an…②

由①﹣②得(1﹣a)Tn=1+2a+2a2+2a3+…+2an﹣1﹣(2n﹣1)an

=

当a=1时,Tn=n2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网