题目内容
【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圆:x2+y2+2x﹣4=0相切,则a的取值范围是( )
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 或 ≤a≤7
D.a≥7或a≤﹣3
【答案】C
【解析】解:当两平行直线和圆相交时,有 ,解得﹣ <a< . 当两平行直线和圆相离时,有 ,解得 a<﹣3 或a>7.
故当两平行直线和圆相切时,把以上两种情况下求得的a的范围取并集后,再取此并集的补集,即得所求.
故所求的a的取值范围是﹣3≤a≤一 或 ≤a≤7,
故选:C.
练习册系列答案
相关题目
【题目】某地最近十年对某商品的需求量逐年上升,下表是部分统计数据:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(万件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量y与年份x之间的回归直线方程 = x+ ;
(2)预测该地2018年的商品需求量(结果保留整数).