题目内容

设二次函数f(x)=ax2+bx+1(a、b∈R)
(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求实数a、b的值;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)在(1)的条件下,若f(x)≤m2-2am+2对所有x∈[-1,
2
-1],a∈[-1,1]
恒成立,求实数m的取值范围.
(1)∵f(-1)=0,
∴a-b+1=0即b=a+1,
又对任意实数x均有f(x)≥0成立
a>0
△=b2-4a≤0
恒成立,即(a-1)2≤0恒成立
∴a=1,b=2;
(2)由(1)可知f(x)=x2+2x+1
∴g(x)=x2+(2-k)x+1
∵g(x)在x∈[-2,2]时是单调函数,
[-2,2]?(-∞,
k-2
2
]或[-2,2]?[
k-2
2
,+∞)

2≤
k-2
2
k-2
2
≤-2

即实数k的取值范围为(-∞,-2]∪[6,+∞).
(3)f(x)≤m2-2am+2对所有x∈[-1,
2
-1],a∈[-1,1]
恒成立,
等价于m2-2am≥0对所有a∈[-1,1]恒成立,
构造函数g(a)=m2-2am,∴
m2-2m≥0
m2+2m≥0
,∴m≥2或m≤-2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网