题目内容
已知函数f(x)=
(1)当a=0时,求证函数f(x)在它的定义域上单调递减
(2)是否存在实数a使得区间[-1,1]上一切x都满足f(x)≤
,若存在,求实数a的值;若不存在,说明理由.
ax2-(1+a)x+1 |
(1)当a=0时,求证函数f(x)在它的定义域上单调递减
(2)是否存在实数a使得区间[-1,1]上一切x都满足f(x)≤
3 |
(1)a=0时,f(x)=
,定义域为(-∞,1];
∵f/(x)=-
<0
∴函数f(x)在它的定义域上单调递减
(2)假设存在实数a使得区间[-1,1]上一切x都满足f(x)≤
,
即f(x)=
≤
即-1≤ax2-(1+a)x≤2在区间[-1,1]上恒成立
∴-1≤2a+1≤2
∴-1≤a≤
1-x |
∵f/(x)=-
1 | ||
2
|
∴函数f(x)在它的定义域上单调递减
(2)假设存在实数a使得区间[-1,1]上一切x都满足f(x)≤
3 |
即f(x)=
ax2-(1+a)x+1 |
3 |
即-1≤ax2-(1+a)x≤2在区间[-1,1]上恒成立
∴-1≤2a+1≤2
∴-1≤a≤
1 |
2 |
练习册系列答案
相关题目