题目内容

设点P是圆x2y2=4上任意一点,由点Px轴作垂线PP0,垂足为P0,且.
(1)求点M的轨迹C的方程;
(2)设直线lykxm(m≠0)与(1)中的轨迹C交于不同的两点AB.
若直线OAABOB的斜率成等比数列,求实数m的取值范围.
(1)=1(2)(-,0)∪(0,)
(1)设点M(xy),P(x0y0),则由题意知P0(x0,0).
=(x0x,-y),=(0,-y0),且,得
(x0x,-y)= (0,-y0).
于是 
=4,∴x2y2=4.∴点M的轨迹C的方程为=1.
(2)设A(x1y1),B(x2y2).联立
得(3+4k2)x2+8mkx+4(m2-3)=0.
Δ=(8mk)2-16(3+4k2)(m2-3)>0,
即3+4k2m2>0.(*)且
依题意,k2,即k2.
x1x2k2k2x1x2km(x1x2)+m2.
km(x1x2)+m2=0,即kmm2=0.
m≠0,∴k+1=0,解得k2.
k2代入(*),得m2<6.∴m的取值范围是(-,0)∪(0,).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网