题目内容

15.要得到函数y=cos(2x-$\frac{π}{4}$)的图象,只需将函数y=sin2x的图象向左平移$\frac{π}{8}$个单位.

分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:由于y=cos(2x-$\frac{π}{4}$)=sin[$\frac{π}{2}$+(2x-$\frac{π}{4}$)]=sin(2x+$\frac{π}{4}$),
故函数y=sin2x的图象向左平移$\frac{π}{8}$个单位,可得函数y=sin2(x+$\frac{π}{8}$)=sin(2x+$\frac{π}{4}$) 的图象,
故答案为:向左平移$\frac{π}{8}$个单位.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网