题目内容
【题目】已知函数,.
若恒成立,求的取值范围;
已知,是函数的两个零点,且,求证:.
【答案】(1)(2)见解析
【解析】试题分析:构造,求导,算单调性,取最值情况法一:联立方程组求解转化为证明,设,求导证明结论;法二:要证,只需证,由单调性只需证,令证明结论
解析:令,有,当时,,当时,,所以在上单调递减,在上单调递增,在处取得最大值,为,
若恒成立,则即.
方法一:,,
,
即
,
欲证:,只需证明,只需证明,
只需证明.
设,则只需证明,
即证:.
设,,
在单调递减,,
,所以原不等式成立.
方法二:由(1)可知,若函数 有两个零点,有,则,且,
要证,只需证,由于在上单调递减,从而只需证,由,
只需证,
又,
即证
即证,.
令,,
有在上单调递增,,.
所以原不等式成立.
练习册系列答案
相关题目
【题目】大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 573 | 6.8 | 289.8 | 1.6 | 215083.4 | 31280 |
表中,.
根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
根据的判断结果及表中数据,建立关于的回归方程;
已知这种产品的年利润与、的关系为.根据的结果回答下列问题:
年宣传费时,年销售量及年利润的预报值是多少?
年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:
,.