题目内容
【题目】设函数,若在区间上无零点,则实数的取值范围是( )
A. B. C. D.
【答案】A
【解析】函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).
f′(x)=,
令g(x)=2ax2+ax﹣a+1.
(i)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(0,+∞)上单调递增(ii)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).
①当0<a≤时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(0,+∞)上单调递增,无极值点.
②当a>时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.
当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;
当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;
当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.
①当0≤a≤时,函数f(x)在(0,+∞)上单调递增.
∵f(0)=0,
∴x∈(0,+∞)时,f(x)>0,符合题意.
②当 <a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.
又f(0)=0,
∴x∈(0,+∞)时,f(x)>0.
③当1<a时,由g(0)<0,可得x2>0,
∴x∈(0,x2)时,函数f(x)单调递减.
又f(0)=0,∴x∈(0,x2)时,f(x)<0,x趋向于正无穷时函数值大于0,不符合题意,舍去;
④当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.
∴h(x)在(0,+∞)上单调递增.
因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,
可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,
当x>1﹣时,
ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.
综上所述,a的取值范围为[0,1].
故答案为:A.
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |