题目内容

(本题满分14分)如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB。(1)求证:AB平面PCB;(2)求二面角C—PA—B的大小.
(Ⅰ)略   (Ⅱ)  arcsin 
(1)∵PC平面ABC,平面ABC,
∴PCAB


 
∵CD平面PAB,平面PAB,

∴CDAB又
∴AB平面PCB.…6分
(2)解法一:取AP的中点E,连结CE、DE.
∵PC=AC=2,∴CE PA,CE=
∵CD平面PAB,
由三垂线定理的逆定理,得DE PA.
为二面角C-PA-B的平面角.
由(I) AB平面PCB,又∵AB⊥BC,又AB=BC,AC=2,可求得BC=
  在中,PB=

中, sin∠CED=
∴二面角C—PA—B的大小为arcsin.…………14分
(2)解法二:
∵AB⊥BC,AB⊥平面PBC,过点B作直线l//PA,则l⊥AB,l⊥BC,以BC、BA、l所在直线为x、y、z轴建立空间直角坐标系(如图)


 
设平面PAB的法向量为


  即
解得  
=" -1, " 得= (,0,-1)
设平面PAC的法向量为=().

  即
解得  令="1, " 得= (1,1,0).
=
∴二面角C—PA—B的大小为arccos
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网