题目内容
【题目】某理财公司有两种理财产品A和B,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品A
投资结果 | 获利40% | 不赔不赚 | 亏损20% |
概率 |
产品B
投资结果 | 获利20% | 不赔不赚 | 亏损10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙两人分别选择了产品A和产品B投资,如果一年后他们中至少有一人获利的概率大于,求实数p的取值范围;
(2)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?
【答案】(1);
(2)当时,E(X)=E(Y),选择产品A和产品B一年后投资收益的数学期望相同,可以在产品A和产品B中任选一个;
当时,E(X)>E(Y),选择产品A一年后投资收益的数学期望较大,应选产品A;
当时,E(X)<E(Y),选择产品B一年后投资收益的数学期望较大,应选产品B.
【解析】
(1)先表示出两人全都不获利的概率,再求至少有一人获利的概率,列出不等式求解;
(2)分别求出两种产品的期望值,对期望中的参数进行分类讨论,得出三种情况.
(1)记事件A为“甲选择产品A且盈利”,事件B为“乙选择产品B且盈利”,事件C为“一年后甲,乙两人中至少有一人投资获利”,则,.
所以,解得.
又因为,q>0,所以.
所以.
(2)假设丙选择产品A进行投资,且记X为获利金额(单位:万元),则随机变量X的分布列为
X | 4 | 0 | -2 |
p |
则.
假设丙选择产品B进行投资,且记Y为获利金额(单位:万元),则随机变量Y的分布列为
Y | 2 | 0 | -1 |
p | p | q |
则.
讨论:
当时,E(X)=E(Y),选择产品A和产品B一年后投资收益的数学期望相同,可以在产品A和产品B中任选一个;
当时,E(X)>E(Y),选择产品A一年后投资收益的数学期望较大,应选产品A;
当时,E(X)<E(Y),选择产品B一年后投资收益的数学期望较大,应选产品B.
【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用、两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.
(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;
(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.
甲班() | 乙班() | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |