题目内容
【题目】已知函数,,其中.
(1)求过点和函数的图像相切的直线方程;
(2)若对任意,有恒成立,求的取值范围;
(3)若存在唯一的整数,使得,求的取值范围.
【答案】(1),.(2).(3).
【解析】试题分析:(1)先设切点为,切线斜率为,再建立切线方程为,将代入方程可得,即,进而求得切线方程为:或.
(2)将问题转化为对任意有恒成立,①当时,,利用导数工具求得,故此时;
②当时,恒成立,故此时;③当时,,
利用导数工具求得,故此时.综上:.
(3)因为,由(2)知,
当,原命题等价于存在唯一的整数成立,利用导数工具求得;当,原命题等价于存在唯一的整数成立,利用导数工具求得.综上:.
试题解析:
(1)设切点为,,则切线斜率为,
所以切线方程为,因为切线过,
所以,
化简得,解得.
当时,切线方程为,
当时,切线方程为.
(2)由题意,对任意有恒成立,
①当时,,
令,则,令得,
,故此时.
②当时,恒成立,故此时.
③当时,,
令,
,故此时.综上:.
(3)因为,即,
由(2)知,
令,则
当,存在唯一的整数使得,
等价于存在唯一的整数成立,
因为最大,,,所以当时,至少有两个整数成立,
所以.
当,存在唯一的整数使得,
等价于存在唯一的整数成立,
因为最小,且,,所以当时,至少有两个整数成立,
所以当时,没有整数成立,所有.
综上:.
【题目】某校参加夏令营的同学有3名男同学和3名女同学,其所属年级情况如下表:
高一年级 | 高二年级 | 高三三年级 | |
男同学 | |||
女同学 |
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
(1)用表中字母写出这个试验的样本空间;
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件的样本点,并求事件发生的概率.
【题目】某理财公司有两种理财产品A和B,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品A
投资结果 | 获利40% | 不赔不赚 | 亏损20% |
概率 |
产品B
投资结果 | 获利20% | 不赔不赚 | 亏损10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙两人分别选择了产品A和产品B投资,如果一年后他们中至少有一人获利的概率大于,求实数p的取值范围;
(2)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?