题目内容

【题目】在等比数列{an}中,an>0 (nN ),公比q(0,1)a1a5+2a3a5a2a8=25,又a3a5的等比中项为2.

(1) 求数列{an}的通项公式;

(2) ,数列{bn}的前n项和为Sn,当最大时,求n的值.

【答案】(1) 25n (2) 89

【解析】

(1)根据等比数列的性质可知a1a5=a32,a2a8=a52化简a1a5+2a3a5+a2a8=25得到a3+a5=5,又因为a3a5的等比中项为2,联立求得a3a5的值,求出公比和首项即可得到数列的通项公式;(2)把an代入到bn=中得到bn的通项公式,即可得到前n项和的通项sn;把sn代入得到,讨论求出各项和的最大值时n的取值

解 (1)∵a1a5+2a3a5a2a8=25,

a+2a3a5a=25,

an>0,∴a3a5=5.

a3a5的等比中项为2,

a3a5=4,而q∈(0,1),

a3>a5,∴a3=4,a5=1.

qa1=16,∴an=16×n-1=25-n.

(2)bn=log2an=5-n

bn+1bn=-1,

∴{bn}是以b1=4为首项,-1为公差的等差数列,

Sn

∴当n≤8时, >0;

n=9时,=0;

n>9时, <0.

n=89时,+…+最大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网