题目内容
【题目】设椭圆的左右焦点分别为F1,F2,点P 在椭圆上运动, 的最大值为m, 的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为________
【答案】[,1)
【解析】∵, ∴,
,
, ,
的最大值,设,则 , , 的最小值为, 由,得,
,解得,故答案为.
【方法点晴】本题主要考查平面向量数量积公式、利用椭圆定义与的简单性质求椭圆的离心率范围,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式等式,从而求出的范围.本题是利用构造出关于的不等式,最后解出的范围.
练习册系列答案
相关题目