题目内容
【题目】已知函数是奇函数(其中)
(1)求实数m的值;
(2)已知关于x的方程在区间上有实数解,求实数k的取值范围;
(3)当时,的值域是,求实数n与a的值.
【答案】(1);(2);(3),.
【解析】
(1)由f(x)是奇函数,f(﹣x)=﹣f(x),结合对数的真数大于0求出m的值;
(2)由题意问题转化为求函数在x∈[2,6]上的值域,求导判断出单调性,进而求得值域,可得k的范围.
(3)先判定函数的单调性,进而由x时,f(x)的值域为(1,+∞),根据函数的单调性得出n与a的方程,从而求出n、a的值.
(1)∵f(x)是奇函数,
∴f(﹣x)=﹣f(x),
∴logalogaloga,
∴,
即1﹣m2x2=1﹣x2对一切x∈D都成立,
∴m2=1,m=±1,
由于0,∴m=﹣1;
(2)由(1)得,,∴
即,令,
则,
∴在区间上单调递减,当时,;当时,;所以,.
(3)由(1)得,,且
∵在与上单调递减
∵x∈(n,a﹣2),定义域D=(﹣∞,﹣1)∪(1,+∞),
①当n≥1时,则1≤n<a﹣2,即a>1+2,
∴f(x)在(n,a﹣2)上为减函数,值域为(1,+∞),
∴f(a﹣2)=1,
即a,
∴a3,或a1(不合题意,舍去),且n=1;
②当n<1时,则(n,a﹣2)(﹣∞,﹣1),
∴n<a﹣21,
即a<21,
且f(x)在(n,a﹣2)上的值域是(1,+∞);
∴f(a﹣2)=1,
即a,
解得a3(不合题意,舍去),或a1;
此时n=﹣1(舍去);
综上,a3,n=1.
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.