题目内容
【题目】定义在R上的函数y=f(x)为减函数,且函数y=f(x﹣1)的图象关于点(1,0)对称,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,则x﹣b的取值范围是( )
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]
【答案】B
【解析】解:设P(x,y)为函数y=f(x﹣1)的图象上的任意一点,关于(1,0)对称点为(2﹣x,﹣y), ∴f(2﹣x﹣1)=﹣f(x﹣1),即f(1﹣x)=﹣f(x﹣1).
∴不等式f(x2﹣2x)+f(2b﹣b2)≤0化为f(x2﹣2x)≤﹣f(2b﹣b2)=f(1﹣1﹣2b+b2)
=f(b2﹣2b),
∵函数y=f(x)为定义在R上的减函数,
∴x2﹣2x≥b2﹣2b,
化为(x﹣1)2≥(b﹣1)2 ,
∵0≤x≤2,∴ 或 .
画出可行域.设x﹣b=z,则b=x﹣z,由图可知:当直线b=x﹣z经过点(0,2)时,z取得最小值﹣2.
当直线b=x﹣z经过点(2,0)时,z取得最大值2.
综上可得:x﹣b的取值范围是[﹣2,2].
故选B.
【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.
练习册系列答案
相关题目